Allgemein
PROJECTIVE
GEOMETRY
Nick Thomas - nct@cix.compulink.co.uk
Projective
geometry is a beautiful subject which has some
remarkable applications beyond those in standard
textbooks. These were pointed to by Rudolf Steiner who sought
an exact way of working scientifically with
aspects of reality which cannot be described in
terms of ordinary physical measurements.
His colleague George Adams worked out
much of this and pointed the way to some
remarkable research done by Lawrence Edwards in recent
years. Steiner's spiritual research showed
that there is another kind of space in which more
subtle aspects of reality such as life processes
take place. Adams took his descriptions of
how this space is experienced and found a way of
specifying it geometrically, which is dealt with
in the Counter Space Page.
A brief introduction to the basics
of the subject is given in the Basics Page.
The work of Lawrence Edwards is
introduced in the Path Curves Page, and some
explorations of his work on further aspects is
described in the Pivot Transforms Page. This is
mostly pictorial, with reference to
documentation.
http://www.anth.org.uk/NCT/
Für welche Zahlenpaare ist das
Potenzieren kommutativ ?
Dieter Kötter - e-mail:
d.koetter@t-online.de
Während für die erste und zweite
Rechenstufe a+b =
b+a bzw. a·b
= b·a gilt, ist bei der dritten
Rechenstufe, dem Potenzieren im allgemeinen ab ¹ ba . Jeder kennt
jedoch das Beispiel 24 = 42 . Man kann sich die Frage
vorlegen, welche weiteren Zahlenpaare (x/y) es gibt, für die xy
= yx gilt . Wir werden im
Folgenden solche Zahlenpaare potenzkommutativ
nennen.
http://home.t-online.de/home/d.koetter/potenz.html
|